Àá½Ã¸¸ ±â´Ù·Á ÁÖ¼¼¿ä. ·ÎµùÁßÀÔ´Ï´Ù.
KMID : 1024520130220020187
Journal of the Environmental Sciences
2013 Volume.22 No. 2 p.187 ~ p.193
Characteristic of Matter Allocation of Calystegia soldanella under Water Stress
Park Yong-Mok

Abstract
Dry matter allocation characteristics of Calystegia soldanella, grown in pots, was analysed to assess its plasticity in response to water-stressed conditions. As water was withheld leaf water potential between the two watering treatments was similar during the first 6 days, followed by a rapid decrease in water-stressed plants. The minimum leaf water potential was -1.50 MPa on day 15 and the maximum leaf water potential was about -0.5 MPa on day 0 in water-stressed plants. In well-watered plants leaf water potential was maintained almost consistently throughout the experiment. There was no significant difference in plant dry weight between the two watering treatments for 9 days after the start of experiment and that was remarkably increased thereafter, compared with that remained without any increase in water-stressed plants. In dry mass partitioning, however, the water-stressed plants showed a great plasticity, showing that there were 1.81, 1.35 and 0.81 times increase in root, stem and leaf, respectively. Dry mass partitioning in well-watered plants varied from 2% to 5%. The difference of dry mass partitioning between the two watering treatments was reflected in leaf mass per unit area (LMA) and root/shoot (R/S) ratio. LMA in water-stressed plants was lower than that in well-watered plants, while R/S ratio in water-stressed plants was higher in well-watered plants. This means that the water-stressed plants reduced its leaf area and increased dry mass partitioning into root and stem during the progress of soil drying. These results indicate that Calystegia soldanella inhabiting in sand dune cope with water stress with high plasticity which can adjust its dry mass partitioning according to soil water conditions.
KEYWORD
Calystegia soldanella, Dry mass partitioning, Leaf water potential, Sand dune, Water stress
FullTexts / Linksout information
Listed journal information
ÇмúÁøÈïÀç´Ü(KCI)